

Predicting Maturity of Hass Avocado Using Hyperspectral Imagery

M. Denis Girod, Dr. Jacques-André Landry: *Université du Québec* Dr. Gilles Doyon: *Agriculture and Agri-Food Canada* Dr. Jorge A. Osuna-Garcia: *INIFAP Mexico*

What is this all about?

- Avocados are climacteric fruits harvested once they reach *legal* maturity.
- Maturity is related to oil content but is commonly measured using dry matter content (DM).
- There is a need to evaluate maturity in the field in a non destructive manner.
- A hand held instrument that could perform this task quickly and accurately is under investigation.

Spectroscopy

 Study the interaction of light with objects, commonly from ultraviolet to near infrared (200nm-2500nm).

- The spectrum of interest is separated in numerous contiguous narrow bands.
- Incident energy from the electromagnetic spectrum interacts with objects in 3 ways:
 - Absorption, Transmission and Reflection
- We use hyperspectral imagery to evaluate absorption and reflection of light by objects at different wavelengths.

- Interaction of light:
 - Absorption
 - Transmission
 - -and Reflection

Reflectance and absorbance

Reflectance and absorbance

 Hyperspectral cube : spatial (x,y) and spectral (λ) information.

Materials and Methods

- Fruits:
 - -21 avocados from a local market.
- Dry Matter (DM) measurements:
 - -Obtained using a laboratory oven. (105°C for 5 hours)
 - -4 measurements on each fruit.

- Spectral measurements:
 - -VIS/NIR (400nm-1000nm) spectrum in reflectance mode.
 - -4 acquisitions for each fruit.
 - -163 spectral bands for each acquisition.

Materials and Methods

- Spectral data analysis:
 - -Linear model: Partial Least Square

$$\% DM = \beta_1 \lambda_1 + \beta_2 \lambda_2 + \beta_3 \lambda_3 + \dots + \beta_{163} \lambda_{163} + e$$

- -Calibration/Validation statistics:
 - Root mean square error of prediction
 -RMSEP
 - Correlation coefficient
 - $-R^2$

Results – Dry Matter

• DM were found to vary between 19.8 and 42.5%.

Results – Dry Matter

 For visualisation, we created 4 categories based on dry matter:

Results – Imagery

Results – Imagery

Absorption spectrum of 3 plant pigments

(from the literature)

Results – Imagery

Results - 163 Spectral Bands

	RMSEP	R ²
Absorbance	1.65	0.94
Reflectance	2.41	0.86

Absorbance offer better performances.

Spectral Band Reduction

- All 163 spectral bands are not useful.
- Portable instrument with 163 bands?
- Spectral band reduction benefits:
 - -Simpler models
 - -Better performance results?
- Method:
 - Backward elimination: remove one band at a time, and evaluate it's contribution (error of the model).

Results - Band Reduction

	RMSEP	R ²
5 bands	2.04	0.90
16 bands	1.35	0.96
163 bands	1.65	0.94

- Band reduction is possible and can even offer better performances.
- 16 bands was found to be optimal
- As few as 5 bands produce very acceptable results

Results - Band Reduction

Conclusion

- Excellent correlation between dry matter and spectral measurements.
- Improved results when using band reduction (R²=0.96).
- A portable instrument using only 5 spectral bands is foreseeable (R²=0.90).
- Same approach could (and will!) be applied to other tropical fruits.

Coming Up!

- Final development of a portable instrument
 - Conduct a complete study at the production site (Mexico) to obtain better data.
 - Develop and test a prototype.
 - -Final design of a commercial device.

Coming Up!

• Final development of a portable instrument

http://www.nir-fantec.co.jp/gun-JP.htm

Predicting Maturity of Hass Avocado Using Hyperspectral Imagery

M.Denis Girod, Dr.<u>Jacques-André Landry</u>: *Université du Québec* Dr.Gilles Doyon: *Agriculture and Agri-Food Canada* Dr.Jorge A. Osuna-Garcìa: *INIFAP Mexico*

Materials and methods

- Spectral data analysis:
 - Spectrum in reflectance and absorbance : $log(\frac{1}{Reflectance})$
 - Linear modelization : Partial Least Square

$$\% DM = \beta_1 \lambda_1 + \beta_2 \lambda_2 + \beta_3 \lambda_3 + \dots + \beta_{163} \lambda_{163} + e$$

- Calibration/Validation statistics:
 - Root mean square error of prediction: $RMSEP = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (\hat{y}_i y_i)^2}$
 - Correlation coefficient: $R^{2} = 1 \frac{\sum_{i=1}^{N} (y_{i} \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} \overline{y})^{2}}$

- Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry (ElMasry, Gamal; Wang, Ning; ElSayed, Adel; Ngadi, Michael)
- Hyperspectral scattering for assessing peach fruit firmness (Lu, Renfu; Peng, Yankun)
- Detecting pits in tart cherries by hyperspectral transmission imaging (Qin, Jianwei; Lu, Renfu)
- Correlation analysis of hyperspectral imagery for multispectral
 wavelength selection for detection of defects on apples (Lee, Kangjin; Kang,
 Sukwon; Delwiche, Stephen; Kim, Moon; Noh, Sangha)
- Non-destructive measurement of bitter pit in apple fruit using NIR
 hyperspectral imaging (Nicolai, Bart M.; Lotze, Elmi; Peirs, Ann; Scheerlinck,
 Nico; Theron, Karen I.)
- Performance of hyperspectral imaging system for poultry surface fecal contaminant detection (Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Smith, Douglas P.)
- Visible/near-infrared hyperspectral imaging for beef tenderness
 prediction (Naganathan, Govindarajan Konda; Grimes, Lauren M.; Subbiah,
 Jeyamkondan; Calkins, Chris R.; Samal, Ashok; Meyer, George E.)