Number of plants necessary to recover a trait

Sedcole (1977) discussed four methods for calculating the needed, with a specified probability, the number of traits needed to recover a trait. A simple and conservative method to estimate (n) the number of plants to be evaluated to recover at least one plant with the trait is as follows:

$n \ge \log (1-p) / \log (1-q)$

where p is the probability of recovering at least one plant with the trait and q is the probability of the occurrence of the trait.

References

Sedcole, J.R. 1977. Number of plants necessary to recover a trait. Crop Sci. 17:667-668.

BACKCROSS METHOD

367

<i>p</i> *	q†	r (Number of Plants to Be Recovered)								
		1	2	3	4	5	6	8	10	15
0.95	1	5	8	11	13	16	18	23	28	40
	2	8	13	17	21	25	29	37	44	62
	3 1	11	18	23	29	34	40	50	60	84
	4	23	37	49	60	71	82	103	123	172
	8 1	47	75	99	122	144	166	208	248	347
	$\frac{16}{100}$	95	150	200	246	291	334	418	500	697
	$\frac{1}{64}$	191	302	401	494	584	671	839	1002	1397
0.99	$\frac{1}{9}$	7	11	14	17	19	22	27	32	45
	1	12	17	22	27	31	35	44	52	71
	0 1	17	24	31	37	43	49	60	70	96
	1	35	51	64	77	89	101	124	146	198
	1	72	104	132	158	182	206	252	296	402
	$\frac{1}{30}$	146	210	266	218	268	316	508	597	809
	$\frac{1}{64}$	293	423	535	640	739	835	1020	1198	1623

p = probability of recovering r plants with the desired genes.

 $\dagger q$ = frequency of plants with desired genes.

Source: Sedcole, 1977.

Source: Fehr, 1987 Principles of Cultivar Development. Macmillan Pub Co.