

Nutritional Analyses

- Established Nutrients
 - Protein
 - Energy (Starch, Oil)
 - Fiber
 - Vitamins
 - Minerals
- Health-Promoting Phytochemicals

Dry Matter Yield

> Nutrient Yield

Michael A. Grusak

USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX

Nutritional Analyses

- Genetic diversity for many of these components is known to exist, but careful characterization of a range of cultivars for all traits is lacking.
- Eventual mapping of nutritional trait loci will enable breeders to develop more nutritious and health-beneficial cultivars in all market classes.

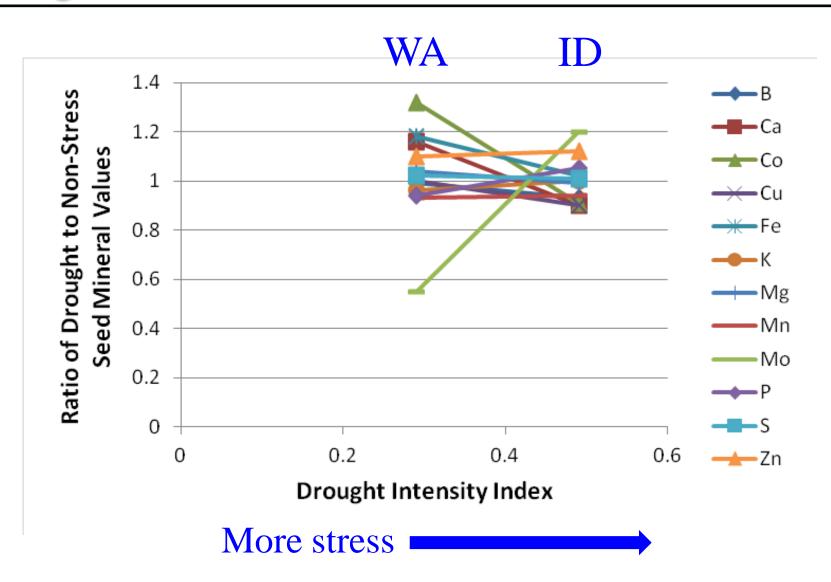
Dry and Snap Bean Evaluations

- Minerals: ICP-OES (Grusak, USDA-TX)
- Iron absorption promoters: <u>Caco-2 in vitro assay</u> (Grusak, USDA-TX)
- Phytate: <u>Colorimetric method (Cichy, USDA-MI)</u>
- **Protein, Oil, Crude Fiber:** <u>Near-infrared Diode</u> <u>Array Analyzer (Naggie, NDSU)</u>
- Antioxidants and Sol/Insol Carbs: <u>HPLC and</u> colorimetric assays (Brick/Thompson, CSU)
- Carotenoids, Vitamin C, Fiber: <u>HPLC (Myers,</u> <u>OSU)</u>

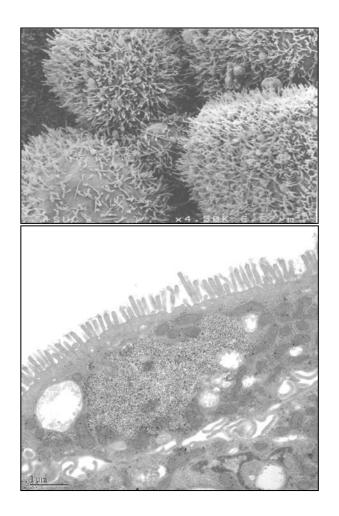
Dry Bean Samples Received/Processed

- 248 dry bean entries grown both in MI and WA in summer of 2010 (496 total) were received in Houston in the fall of 2010 (~150 grams each).
- Over **4,000 samples** grown at multiple sites in the summer of 2011 or winter of 2012 (~150 grams each) were received in Houston by spring 2012
- All samples are being ground (with stainless steel grinders), packaged, and sent to NDSU (60-100 gm) or MSU (15 gm) for analysis by cooperators; this was in addition to mineral analyses conducted in Houston.
- Early samples were ground with coffee grinders; this procedure was switched to an Udy Mill in mid 2012.

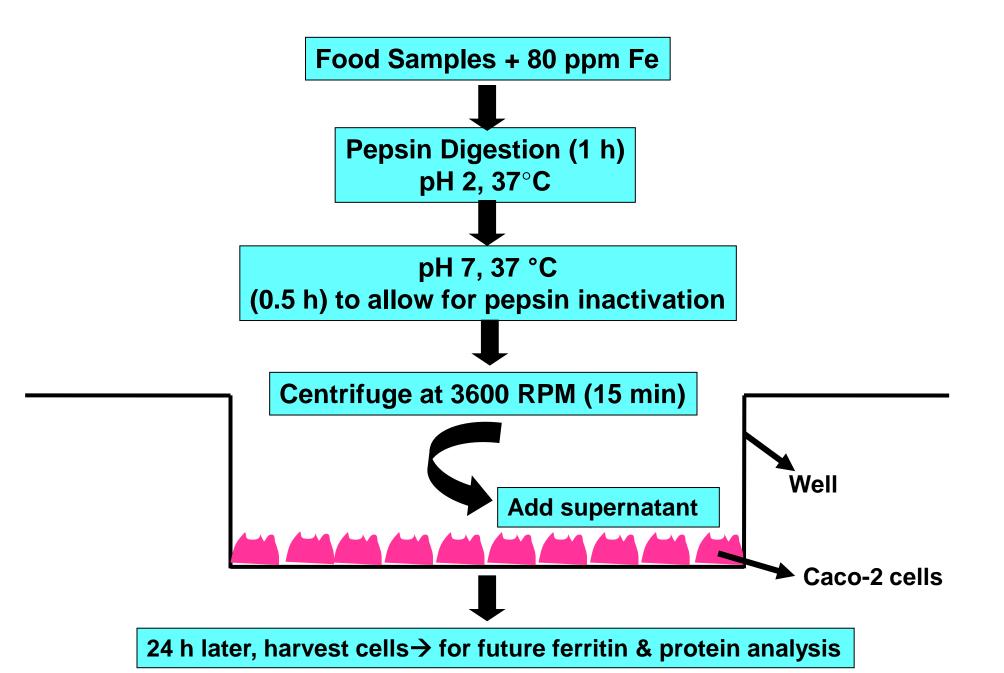
Current Status of 2011/2012 Dry Bean Samples

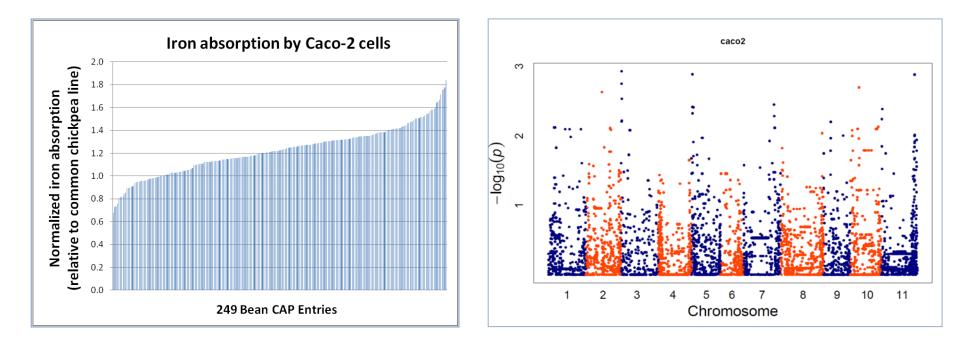

	Shipment	Grinding	Ship to	Digestion	Mineral	Protein, Fat,	Phytate
	Received	Completed	Cooperators		Analyses	Crude Fiber	
300 Entries (2							
reps)							
CO (~600 samples)	X	80%	Apr 2013				
MI (~600 samples)	X	X	X	X	X	X	X
ND (~600 samples)	X	X	X				
NE (714 samples)	X	X	X	X	X		
Drought/Irrigated (96 Entries x 2)							
ID (~384 samples)	X	X	X	X	X	X	
MI (~192 samples)	X	X	X			X	X
ND (0)							
NE (~192 samples)	X	X	X	X	80%		
PR (~384 samples)	X	Mar 2013	Apr 2013				
WA (~384 samples)	X	X	X	X	X	X	

All analyses on 2010 samples have been completed.



Elements	Prosser Range	Fold Range	Idaho Range	Fold Range	MSU 2010	
	(2011)	(Prosser)	(2011)	(Idaho)	Entries (248)	
Ca (mg/g DW)	1.2 - 3.8	3.3 x	1.0 - 3.2	3.3 x	0.4 - 3.8	
K (mg/g DW)	10.6 - 15.3	1.5 x	12.0 - 16.8	1.4 x	10.5 - 15.8	
Mg (mg/g DW)	1.4 - 2.0	1.5 x	1.7 - 2.2	1.4 x	1.2 - 2.4	
P (mg/g DW)	4.0 - 5.5	1.4 x	4.4 - 6.7	1.5 x	3.3 - 6.5	
S (mg/g DW)	1.6 - 2.7	1.7 x	1.9 - 3.1	1.6 x	1.5 - 2.6	
Cu (µg/g DW)	7.2 - 13.9	1.9 x	7.2 - 12.9	1.8 x	6.6 – 13.9	
Fe (µg/g DW)	54.3 - 89.7	1.7 x	50.2 - 92.1	2.9 x	47.2 - 101.4	
Mn (µg/g DW)	13.9 - 23.2	1.7 x	11.8 - 21.0	1.8 x	10.1 – 19.9	
Mo (µg/g DW)	0.3 – 1.2	4.1 x	1.2 - 10.0	8.7 x	not detected	
Ni (µg/g DW)	2.5 - 5.7	2.3 x	not detected		0.6 - 6.3	
Se (µg/g DW)	not detected		not detected		0.3 – 1.0	
Zn (µg/g DW)	23.1 - 43.0	1.9 x	35.5 - 62.6	1.8 x	31.0 - 68.5	


Drought Effect on Seed Mineral Concentrations


Caco-2 Cells

- Human colon adenocarcinoma cell line.
- Derived from a 72 year-old male Caucasian.
- In culture, the cells form a tight monolayer and exhibit features of small intestinal cells with brush border enzymes and transport proteins.
- Can be used as an *in vitro* model to study nutrient absorption.
- Well suited to screen for the effect of various inhibitors/enhancers on mineral bioavailability.

In vitro iron absorption using Caco-2 Cells

- Cooked bean samples were mixed with a standard amount of iron and fed to Caco-2 cells after *in vitro* digestion.
- Assay measured the potential of food components (in bean) to promote iron absorption.
- Normalized values demonstrated a 2.7-fold range.

Protein/Fiber/Fat Analyses (2010 samples)

	MI (MSU 2010)	WA (Prosser 2010)
% Protein (DW basis)	18.77 - 31.54	20.57 - 31.29
% Crude Fiber (DW basis)	3.43 - 8.35	3.18 - 8.33
% Fat (DW basis)	0.97 – 2.28	0.98 - 2.11

- Both NIR and chemical analyses were performed on 2010 samples in order to calibrate the NIR measurements.
- Had planned to just process all the 2011 samples by NIR, but new grinding procedure (finer grind) meant more calibrations were needed (NIR and chemical analysis comparisons).
- This is now completed and all further samples will be analyzed by NIR.

Update on Phytate Results

- Completed the analysis of 496 bean samples from 2010 and 950 bean samples from 2011 field seasons.
- An additional 300 lines (2011) have been prepared for analysis.
- Phytate levels are ranging from 2.5 7.2 mg/g (2.9-fold).
- A negative correlation was found between cooking time and phytic acid levels in a screening of 100 bean lines (r = -0.45, p<0.0001)

Plans for 2013

- Complete grinding of all 2011/2012 dry bean samples; distribute final subsamples to analytical cooperators.
- Complete mineral analyses on all samples.
- Work with Phil McClean's group on data analyses and Association Mapping.
- Plan and write manuscript(s), especially a characterization of 2010 field samples.